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Introduction
Effi cient production signifi cantly relies on the availability of 
the production equipment. In order to guarantee the intended 
usage of such equipment and to avoid unplanned downtimes, 
the status of the equipment and its components – further re-
ferred to as “asset” – need to be monitored and assessed. This 
process is called Condition Monitoring. 

Based on the assessment and with knowledge of the intended 
processes to be carried out, a prediction of the remaining er-
ror-free operation of the equipment can be made, and possi-
ble activities for maintenance can be planned. This process is 
called Predictive Maintenance. Changes of the production 
workfl ow can also be initiated, targeting on re-organization of 
the equipment usage. Figure 1 shows a principle system struc-
ture with condition monitoring and prediction function

A main prerequisite for such prediction is the availability of 
status information of the equipment or component. Modern 
automation system components are more and more equipped 
with sensors and capabilities for self-monitoring. These func-
tions may gather data that can be used to determine the com-
ponent status. However, the components are delivered from 
different vendors and are based on different technologies. 
Thus, a uniform solution for accessing the data and calculating 
status information is currently not available. This signifi cantly 
impedes the efforts for an introduction of predictive mainte-
nance solutions. 

Due to the heterogeneity and the technological design of the 
networks the components are connected to, it is rather impos-
sible to transfer all relevant raw data to a cloud-based status 
calculation and prediction solution.

From the status description above, a demand for standardiza-
tion can be derived. Providing an appropriate infrastructure, 
consisting of components with uniform interfaces, is of ut-
most importance. Such an approach will support an easy com-
position of complex condition monitoring and predictive 
maintenance solutions. It will allow aggregating the single in-
formation – derived from raw data using analytics methods – 
with respect to the functional structure of the equipment or 
plant. 

This document discusses the actual status of related technol-
ogies and approaches, refl ects actual development trends, 
identifi es standardization needs, and proposes a roadmap for 
further standardization activities for predictive maintenance in 
Intelligent Manufacturing and Industrie 4.0.

This roadmap focuses on the predictive maintenance in the in-
telligent manufacturing process, which is different from tradi-
tional troubleshooting. The connotation of Prognostics and 
Health Management (PHM) which originated in the fi eld of 
military and aerospace is so broad. In the background of intel-
ligent manufacturing, the predictive maintenance in this 
roadmap collects the raw data using the condition monitoring, 
fault diagnosis and other methods, which processes the data 
and provides support for failure prediction.
Several countries have started research on or application of 
predictive maintenance in many different fi elds. This roadmap 
currently only includes related work in China and Germany.
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Part 1: Current status of predictive maintenance

1.1 Current status of predictive maintenance in China

Because of the manufacturing method change, which is led by 
the intelligent manufacturing technology of the Cyber-physi-
cal systems, such as intelligent equipment and factory, the in-
dustrial value chain system is being rebuilt. Leading this devel-
opment is the new manufacturing model, such as network 
crowdsourcing, collaborative design, mass customization, ac-
curate supply chain management, life cycle management, and 
e-commerce. With a new manufacturing model, new manu-
facturing fields develop, which are expanded by  intelligent 
terminal products, such as wearable intelligent products, the 
intelligent household and intelligent cars. The new generation 
of information technology is closely cooperating with the 
manufacturing industry, which is bringing about a far-reaching 
industry revolution. This new industrial revolution allows the 
formation of a new production mode, industrial form, business 
model and economic growth point. 

China’s economy is stepping into a new era. The development 
of intelligent manufacturing is the best way to integrate the 

development of the emerging industries with an upgrade of 
traditional industries. At the same time, it has an important 
and far-reaching impact on deepening the integration of man-
ufacturing and the internet, while strengthening the founda-
tion of the real economy. “Made in China 2025” makes Indus-
trie 4.0/Intelligent Manufacturing a priority. To build manu-
facturing power, it puts a special emphasis on the following 
points:

1. Accelerate the development of intelligent manufactur-
ing equipment and products.  
The organisation develops intelligent manufacturing 
equipment and intelligent production lines with the func-
tion of depth perception, intelligent decision and au-
to-execute, such as the high-grade CNC machine tool, in-
dustrial robots and additive manufacturing equipment. It 
breaks through intelligent core devices, such as new sen-
sors, intelligent measure instrument, industrial control 
systems, ervo-motors & driver and the speed gearbox. All 
of these will promote engineering and industrialisation. 
This will accelerate the intelligent reconstruction of pro-
duction equipment, such as machinery, aviation, ship, au-
tomobile, light, textile, food and electronic industry. 

China will further improve the capacity of the precise and 
agile manufacturing, including intelligent vehicles, intelli-
gent construction machinery, service robots, intelligent 
household, intelligent lighting appliance and wearable 
devices. 

2. Advance manufacturing process intelligence.  
In priority fields, China will try to build intelligent plants/
digital workshops. This will help accelerate the applica-
tion of new technology and equipment in the productive 
process, such as the intelligent human-machine interac-
tion, the industrial robots, the intelligent logistics man-
agement and the additive manufacturing. All of this will 
help China’s economy with simulation optimization, digi-
tal control, real-time state monitoring and adaptive con-
trol of the manufacturing process. China will promote the 
integration of key links, such as group management and 
control, design and manufacture, integration of manufac-
turing and marketing, business and financial connection. 
This allows the economy to carry out intelligent control 
by the means of accelerating the popularization and ap-
plication of the product life-cycle management, customer 
relationship management and supply chain management 
systems. The country will speed up the construction of 
intelligent detection and supervision systems in key in-
dustries, such as the civil explosive, dangerous chemicals, 
food, printing and dyeing, rare earth, pesticides, to im-
prove the level of intelligence. 

The intelligent factory, which is composed of industrial robot 
and large numerical control machine, is the result of deeper 
integration of the information technology and the automation 
technology. It is also an important carrier of intelligent manu-
facture. One of the most pressing issues in the field of intelli-
gent manufacturing is how to avoid unexpected downtime in 
the production process and ensure production efficiency of 
the intelligent plant.  
 
In the end of the 1990s, the United States introduced on-con-
dition maintenance in the field of civil products industry. 
Through analysing the reliability factors in each part of the 
mechanical equipment, scientific determination of the main-
tenance work item is possible. This enables an optimisation of 
maintenance works by determining a reasonable maintenance 
period. Maintenance work will be limited to what is required, 
which leads to greater reliability of the mechanical equipment 
and saves maintenance time and reduces costs. The aim is to 
monitor the device status of equipment in real-time or near 
real-time, and to determine the best time for maintenance ac-
cording to the actual condition of the equipment. The aim is 
further to improve the availability of the equipment and the 
reliability of the task. In the field of civil technology, predictive 
maintenance technology has been widely used in the monitor-
ing and managing the health of important equipment and en-
gineering facilities, such as automobiles, civil aircraft, bridges, 
complicated constructions, and nuclear power stations. 

The predictive maintenance technique emphasizes the relia-
bility of equipment and the failure effect of equipment as the 
main basis for the formulation of the maintenance strategy. 
Based on structural evaluation and analysis of the failure ef-
fect of equipment, the comprehensive fault effect and the in-
formation about failure mode which is taking operation econ-
omy as the starting point, presents a maintenance strategy for 
security, operation economy and maintenance cost savings. 
The predictive maintenance technique could diagnose the po-
tential faults of the system and to protect them in advance. 
Therefore, it can effectively improve the functioning of intelli-
gent devices, increase the reliability and availability of intelli-
gent devices, and reduce the maintenance cost of intelligent 
equipment and manufacturing cost of production system. 
Compared with traditional breakdown maintenance and peri-
odic maintenance technology, the predictive maintenance 
technique, which takes the feature recognition, life prediction, 
fault analysis, maintenance planning as the core technologies, 
is characteristically networked, intelligent, and in real-time. 
Thus, more and more scholars and experts have paid attention 
to it.

However, currently there are still some bottleneck problems in 
predictive maintenance technology, which seriously affect its 
application in the industrial field. For example, the research on 
the actual system is not enough, and the prediction model 
cannot adequately reflect the equipment characteristics. The 
degree of digitalization and availability of digital information 
of major equipment is low. The accumulated data cannot ef-
fectively support various data-driven algorithms. The opera-
tional state and potential failures supported by running data 
identification system still need experts, and the potential of 
deep learning algorithms have not been fully explored. In ad-
dition, there are the pressing problems of how to merge the 
results of predictive maintenance into operational mainte-
nance management of the production process and how to 
evaluate the effectiveness of predictive maintenance. Predic-
tive maintenance technology is still far away from real indus-
trialisation and commercialisation.

Several conferences are held regularly in China to gather re-
searchers to discuss the recent advances on predictive mainte-
nance. For example, Chinese Conference on Machinery condi-
tion monitoring, diagnosis, and maintenance is held by Chi-
nese Society for Vibration Engineering every two years. Inter-
national conferences are held and sponsored by China Univer-
sities and research institutes, such as International Conference 
on Sensing, Diagnostics, Prognostics, and Control, Prognostics 
and System Health Management Conference.

Similar research activities have been held in universities and 
research institutes for many years, e.g. Tsinghua University, 
Beijing Aerospace and Aviation University or China Academy 
of Engineering. Most of them are involved with specific indus-
tries and therefore need deep know-how to such specific ar-
eas. We seldomly see a department of a university or an insti-

Figure 1: Positioning of condition monitoring, prediction, and maintenance scheduling in a production system (principle).
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tute, which has the comprehensive and diverse configuration 
or distribution of segment areas in the topic we are discussing. 
From this point of view, the multi-discipline overlaps and 
knowledge fusion is necessary.

In the industry, there are companies, which are traditionally 
involved in the business of data collection, conditioning moni-
toring, and fault diagnosis. For example, they operate in such 
areas of large size architecture/bridge health management, 
high power electrical machine monitoring. Some recently 
emerging start-ups are attracting investments. They are utiliz-
ing AI, big data analysis, and cloud computing technologies to 
development highly efficient algorithms, with the potential to 
solving problems innovatively. In era of Intelligent Manufac-
turing/Industrie 4.0, we can see a wave of data driven compa-
nies, and the most applicable area could be predictive mainte-
nance.

There are also several alliance or consortium organizations in 
China. For example, the China Sci-Tech Automation Alliance 
(CSAA) has been operating a working group on these topics 
for many years. They are actively developing an operation 
guideline for general purpose predictive maintenance.

1.2 Current status of predictive maintenance in Germany

Reducing downtime and saving operational costs have been 
goals of a multitude of activities in Germany. Depending on 
the industries, several – mainly individual – approaches have 
been developed. They focus on condition-based maintenance 
approaches, but also incorporate prediction aspects. Especially 
for industries with continuous operation, e.g. oil and gas, 
chemicals, and power plants, condition-based approaches 
show a higher interest. Since continuous operation is com-
bined with high equipment costs, a further demand is put on 
predictive maintenance and maintenance planning. In the in-
dustries listed above, the term asset management has been in-
troduced.

Asset management can be seen from a general, more manage-
ment-oriented, viewpoint, and from one closely related to the 
shop floor. While the first one is supported by ERP systems, 
the second one is also called Plant Asset Management. This 
term is in focus of organizations like NAMUR, an organization 
supporting end users in oil and gas, chemicals, pharmaceuti-
cals, and similar industries. NAMUR has published several rec-
ommendations [NE107, NE158] that cover basic principles of 
plant asset management, the relation to manufacturing execu-
tion systems (MES), and functions for self-diagnosis of com-
ponents, e.g. field devices. The adoption of the before men-
tioned recommendations is rather high in the industries listed. 
However, there are still many individual solutions and legacy 
products used in the market.

In discrete manufacturing industries, the situation is similar. A 
wide range of individual solutions exists, strengthened by the 

broad market of suppliers for systems, devices and compo-
nents. Many of these suppliers offer individual solutions for 
the monitoring and maintenance of their individual products. 
This leads to higher efforts for integration, not only for the 
end users, but also for system suppliers like machine vendors. 
Depending on the individual components used, uniform solu-
tions for condition monitoring and prediction are hard to 
achieve. Several industries, e.g. automotive, tend to integrate 
the specific solutions into their MES, thus offering a close link 
between the measurements and monitoring functions and the 
maintenance planning and execution. In other industries, i.e. 
machine building, machine vendors need to integrate the 
solutions of the suppliers into machine-specific tools and 
products. The end users often must integrate the solutions 
provided by the machine vendors into their own systems. De-
fining interfaces to existing systems and for visualization is 
also in the focus of different activities. This includes, for exam-
ple, a recently started workgroup 7.26 from VDI/GMA.

An approach to harmonise the solutions for condition moni-
toring and to reduce effort and cost of their engineering and 
operation was started by VDMA. Reference architecture has 
been defined, considering different viewpoints [VD582]. The 
main goal of this activity was to provide a uniform definition 
of a condition monitoring function block with well-defined in-
terfaces, applicable at different levels of the automation archi-
tecture.

While many of the technologies and solutions focus on condi-
tion monitoring and malfunction detection, they can be seen 
as inputs for prediction. It is important to generate reliable in-
formation of the components in a manufacturing system. 
Thus, status and condition monitoring directly at the compo-
nents has gained importance as well. From a technological 
level, the current developments towards (industrial) CPS and 
the adoption of Industrial Internet of Things (IIoT) in manu-
facturing systems can be seen as enablers. The effort of inte-
grating such components into manufacturing systems is 
steadily decreasing, reducing the psychological barrier to do 
so. The increasing computing power of such devices supports 
the deployment of condition monitoring in industry.

Furthermore, the ability to access and to compute larger 
amounts of data enables the introduction of new functions, 
like big data analytics, for better determining conditions, since 
historical and statistical data or even data from the internet 
can be integrated. This gives a push to both data-intensive ap-
plications and better prediction methods – applicable not only 
at the MES level, but down to equipment, machines and com-
ponents as well. While the methods of computing larger data 
sets are becoming more widely available, the models for pre-
dictions are not accessible at the same level. Often, they do 
exist at the manufacturer or the integrator, but are not made 
available for the end users.

Industrie 4.0/Intelligent Manufacturing will allow a uniform 

and structured access to information representing the compo-
nents and the system as a whole. It organises the information 
in different partial models of Industrie 4.0/Intelligent Manu-
facturing components, accessed via semantically well-defined 
properties [I40AS]. This allows, for example, providing the 
models mentioned above, and providing condition monitoring 
functions and data as well as prediction functions and data for 
appropriate applications belonging to different views. Thus, it 
can be expected that diagnostics, condition monitoring, and 
prediction will be made available via the asset administration 
shells of the Industrie 4.0 components. On one hand, this will 
reduce the engineering efforts, and on the other hand, it will 
open up business opportunities for providers of such func-
tions, tools and solutions. Interoperability is the key point 
here, supported by uniform and unique semantic definitions 
and by uniform access via Industrie 4.0 conformant services.

The importance of condition monitoring and predictive main-
tenance can be recognized not only from solutions available at 
the market and from activities in standardization groups, but 
also from discussions and roundtable activities at fairs (e.g. 
Hanover Fair, SPS/IPC/Drives in Nuremberg), from articles in 
automation-related journals, and from workshops and confer-
ences. An example is the conference annual “Predictive Main-
tenance 4.0”, organized by VDMA. In February 2018, the 3rd 
conference was held. 

1.3: Development trend of predictive maintenance related 
technologies

Market driver: 

The core targets of Industrie 4.0/Intelligent Manufacturing 
are higher quality, lower cost, higher efficiency and sustaina-
bility. As reliability and stability are quite essential to equip-
ment and production system, we hope to reach the goal of 
near-zero failure operation. The response to any potential fail-
ure should ideally be predictive rather than a response to fail-
ure. 

There are some other market drivers for predictive mainte-
nance. First of all, lack of experienced operators, which means 
we must convert knowledge and experiences of aged profes-
sionals to model and software. Secondly, the emergence of 
service-oriented business model asks for the value creation 
throughout the whole life cycle of equipment and production 
system. For this to work sufficiently, predictive maintenance is 
one of the most important value points of all. Finally, more 
and more available data, more powerful computing capability 
locally and cloud-based services, and more advanced algo-
rithms make it more possible than ever.

Challenges:

However, there are still severe challenges we must face nowa-
days. Almost any model needs training, either offline or online. 

Furthermore, the lack of enough data sometimes makes it dif-
ficult. Data security issues even prevent customer from shar-
ing their data with external service provider. Finally, limited 
knowledge of machine model, complexity of production sys-
tem and operation environment decrease the effectiveness of 
software algorithm.

Enabling technologies:

Fast development of ICT, including industrial big data analysis, 
AI, IoT, cloud computing, edge computing, 5G communication, 
etc. are powerful enablers to predictive maintenance. IoT and 
5G make it possible to gather necessary data. Cloud and edge 
computing lead to powerful and enough data process capabil-
ity. Data analytics and AI will offer more applicable and intelli-
gent algorithms.    

Part 2: Key functions and relevant technologies 
in predictive maintenance

2.1 Introduction

There is a multitude of different technologies existing already 
now, which are applicable to predictive maintenance. Future 
developments in ICT will bear additional potential technolo-
gies for predictive maintenance. Since technology cycles will 
shorten, the maturity and the application prerequisites will 
need to be thoroughly evaluated before integration into pre-
dictive maintenance solutions.

The overall functional structure for predictive maintenance 
will, however, stay rather fixed (see Figure 2). An asset is inte-
grated into an application. The application provides the overall 
context, defining requirements, regulations, etc. The determi-
nation of the current state of an asset needs to be conducted 
using sensing functions. Based on this, a calculation of the 
state of health and a condition status assessment can be per-
formed. This is a prerequisite for fault diagnosis and for defin-
ing repair measures on the one hand, and for remaining life 
prediction and for defining maintenance actions on the other. 
Finally, all the maintenance measures need to be seamlessly 
integrated into a maintenance management solution at the 
Manufacturing Operation Management level. Independent of 
the specific functionalities, a systematic approach should be 
introduced, to establish a predictive maintenance system. 

This functional structure covers both approaches, on-site and 
remote maintenance. The technological developments, espe-
cially the communication and data processing solutions, will 
enhance the usage of remote monitoring and maintenance.

In the following sections, key aspects of relevant functionali-
ties are discussed. 
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`2.2 Sensing Technologies

The key issues in sensing technologies are two-fold: sensing 
modality and sensor placement strategy. Overcoming these is-
sues is necessary to acquire the most representative informa-
tion of machinery status.

A variety of sensing techniques have been instrumented to ac-
quire machinery conditions. According to the correlation be-
tween sensing parameters and machinery conditions, these 
sensing techniques can be categorized into direct sensing and 
indirect sensing methods. Direct sensing techniques (e.g., 
tool-maker’s microscope, radioactive isotopes) measure actual 
quantities that directly indicate machinery conditions. Since 
the defects usually occur internally in the machinery, direct 
sensing is usually performed by disassembling the machinery 
structure or interrupting the normal operations. On the con-
trary, with the symptoms (e.g., the increases of vibration, fric-
tion or heat generation) caused by machinery defect, indirect 
sensing techniques can measure the auxiliary in-process quan-
tities (e.g., force, vibration, and acoustic emission, etc.) that in-

directly indicate machinery conditions. Compared with direct 
sensing, indirect sensing methods are less costly and enables 
continuous detection of all changes (e.g. tool breakage, tool 
wear, etc.) to signal measurements without interrupting ma-
chinery normal operation. Take machining tool as an example, 
the pros and cons of direct sensing and indirect sensing meth-
ods are summarized in Table 1.

The sensors are getting smarter with scalable networking ca-
pability (e.g. smart Internet of Things). In general, the more 
sensors one places on manufacturing equipment, the more 
comprehensive information one obtains to best represent the 
equipment conditions. Nevertheless, in practice, the number 
of sensors is typically limited and subject to issues such as 
cost, installation, etc. Therefore, given only a limited number 
of sensors, the sensor placement locations are needed to be 
optimized to obtain as much information of manufacturing 
equipment as possible. Different optimization strategies are 
developed including heuristic approaches, classical and com-
binatorial optimization.

Besides automatically determining the state of a component 
by sensors, manual inspection will remain a possible alterna-
tive, especially with respect to the know-how of the inspect-
ing persons. Thus, an interface for the integration of results 
from manual inspections should be provided. 
 
2.3 Condition monitoring 

Derivation of condition and status information is based on 
data collection. The data gathered will be used as inputs for 
the calculation of a component’s status, often called health 
state. The health state depends on the actual conditions, per-
haps combined with historical data. Actual conditions can be 
measured from direct or indirect sensing functions. Typically, 
an evaluation is performed by comparing a measured or calcu-
lated condition status with thresholds or reference values. In 
addition, a current system state or other context information 
may be integrated. To assess the status, it may be necessary to 
perform pre-processing functions, for example for filtering, 
data correction, eliminating of overlaying trends, etc.

Depending on the application, different algorithms can be 
used for value processing (Figure 3). The variety spans a range 
from simple arithmetic functions, statistical functions, differ-
entiation, integration, up to transformation functions like FFT. 
With the increasing computing power of the components, 
such algorithms may be deployed to components of the auto-
mation and even sensor levels. Data-driven approaches can be 
used for condition monitoring as well. Common to data-driven 
approaches is the modelling of desired system output (but not 
necessarily of the mechanics of the system) using historical 
data. Such approaches encompass “conventional” numerical 
algorithms, like linear regression or Kalman filters, as well al-
gorithms that are commonly found in the machine learning 
and data mining communities. The latter algorithms include 
neural networks, decision trees, and Support Vector Machines.

Because of the broad functional diversity, it is important to 
provide a uniform way of interpretation for the calculated 
condition status. A suitable way is to map the condition status 
to application-depending value ranges, represented by the 
thresholds or reference values. The ranges can have colours 
assigned, thus creating a traffic light status (Figure 4). 

The calculation of a component’s condition status may not be 
sufficient to provide the condition status for a whole equip-
ment or system. Thus, it is necessary to combine different 
condition status values or traffic lights. For example, as in Fig-
ure 5, the condition status of a machine tool is displayed, ag-
gregated from single condition states of its functional compo-
nents like spindle drive, feed axis, pneumatics, and fluid tech-
nology. The structure of this combination is given by the func-
tional structure of the equipment or system. It may span sev-
eral logical levels, e.g. several combination functions may be 
aggregated in a sequence, finally forming a tree. The combina-
tion function itself may range from a simple logical or-func-
tion, more complex logical functions, parameterized or 
weighted inputs, up to complex aggregation functions. `
It is important to distinguish this functional aggregation from 
the physical deployment of the components. When defining 
the deployment structure, the logical interconnections of the 
functional aggregation are transformed into physical commu-
nication paths.

2.4 Fault diagnosis

The scope of fault diagnosis includes, for example, machine, 
electronics, and communication network. The methods used 
for it are slightly different. The fault diagnosis may be subdi-
vided into fault detection, fault location, fault isolation and 
fault recovery.

The fault diagnosis method can be classified in qualitative/
quantitative manner, according to the methods based on the 
analysis model, based on the qualitative empirical knowledge, 
or be based on the data driven methods. The related methods 
for the fault diagnosis can also be applied to the status moni-
toring process, and the method that based on data-driven can 

Figure 2: The principle functional structure for predictive maintenance

Category Sensing techniques Pros Cons

Direct sensing Microscope, CCD camera, 
Electrical resistances, Radio-
active isotopes

Accurate, direct indicators of 
tool conditions

High cost, limited by opera-
ting environment, mainly for 
offline or intermittent moni-
toring

Indirect sensing Cutting force, vibration, 
sound, acoustic emission, 
temperature, spindle power, 
displacement

Less complex, low cost, suita-
ble for continuous monitoring 
in practical applications

Indirect indicators of machi-
nery conditions

Table 1: Comparison between direct sensing and indirect sensing techniques in machine tools

Figure 3: Determining of health state of a component by processing 

actual input values

Figure 4: Assessment of Condition Status
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also be used for life prediction. Figure 6 shows the classifica-
tion of common fault diagnosis methods.
The method based on an analytical model includes state esti-
mation, parameter estimation and equivalent space. These 
methods need to describe the exact mathematical model in 
the process, and the modelling is an in-depth understanding 
of the mechanism structure in the process, whose ideal state is 
to get the exact model. In practice, there are often relations 
that cannot be explicitly modelled, e.g. complex behaviour, 
which can reduce the diagnostic effects.

The method based on qualitative empirical knowledge in-
cludes the expert system, which is a typical method. At the 
same time, the expert system is widely used in the field of the 
hydraulic machinery, electric power and engine.

The data-driven method includes statistical methods, signal 
processing method, and quantitative artificial intelligence 
method. This kind of method has a wide range of applications 
and is adaptable, and it is especially suitable for those fields, 
where precise models are difficult to obtain. The data-driven 
method includes statistical analysis methods such as grey the-
oretical methods, time series analysis methods and multivari-
ate statistical analysis methods. The representative multivari-
ate analysis method includes PCA (principal component analy-
sis), which will map the data to another space by changing the 
base for the purpose of dimensionality reduction, but it is not 
ideal for complex nonlinear systems. PCA method is often ap-
plied to process industry, such as chemical engineering and 
the fault diagnosis of IC equipment in FDC process. The math-
ematical tools that are applied, include principal component 
analysis (PCA) and canonical variate analysis (CVA). The fault 

diagnosis based on signal processing is widely used in the sig-
nal field of vibration signal and other characteristics, such as 
motor, rotary machinery and internal combustion engines. The 
tools that are applied include wavelet transform, HHT and 
Kalman filter.

It is worth noting that the analytical methods used are similar, 
because there is an internal relationship among state monitor-
ing, fault diagnosis and life prediction.

2.5 Remaining life prediction

Remaining life prediction focuses on predicting the fault and 
remaining life of a device or system based on monitoring and 
assessing data. The method of remaining life research can be 
divided into two kinds: one is to estimate or predict the aver-
age remaining life; the other is to find the probability distribu-
tion of the remaining life.

There are many factors affecting equipment life. For example, 
in the manufacturing, assembly, testing, shipping and installa-
tion and debugging process, any link may affect the reliability 
of the parts. Operating and maintenance environment, such as 
the size of the equipment production load, the operating envi-
ronment (temperature, humidity and dust), as well as the level 
of maintaining the equipment and the responsibility of main-
tenance personnel, can affect the remaining life of the equip-
ment. Therefore, fault prognosis is a very challenging task, 
which needs the above methods for comprehensive applica-
tion. The basic process of fault prognosis is shown in Figure 7.

Remaining life prediction mainly includes four methods: 
methods of insurance and warning devices, data-driven meth-
ods, failure physical model methods, and fusion prediction 
methods. 

Remaining life prediction is feasible from a technical point of 
view. With the development of sensors, microprocessors, 

Figure 5: Functional aggregation of components’ condition status information

Figure 6: Classification of fault diagnosis methods Figure 7: Basic Process of Remaining Life Prediction
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compact non-volatile memory, battery technology, and wire-
less telecommunications networks technology, the implemen-
tation of sensor modules and automatic data recorders, fault 
prognosis is possible. The signal and information processing 
unit theory, which is the core of the fault prognosis system, 
has made significant progress. Especially the mathematical 
model of fault prognosis is becoming more intelligent and 
practical. Based on accurately predicting the life of key parts, 
the fault prognosis combines with automatic identification 
technology, such as radio frequency identification (RFID), 
which is used to locate the parts in the supply chain. Accord-
ing to the requirements, it can quickly obtain and provide re-
placement parts for the on-time supply. 

2.6 Maintenance management 

Maintenance management is the basic task of implementing a 
machine maintenance plan. Predictive maintenance deter-
mines how fast the degradation is expected to progress from 
its current state to functional failure and offers a cost-effec-
tive maintenance strategy. The relationship among the cost, 
time to failure and reliability of machines is shown in Figure 8. 
When time to failure equals zero, the system will go into 
breakdown status. The reliability of the system decreases as 
the time to failure of the system approaches to zero. The per-
formance cost of system increases while the maintenance cost 
decreases. Thus, the total cost, as the sum of the performance 
cost and the maintenance cost, decreases firstly, and then in-
creases. Predictive maintenance with the capability of pre-
cisely predicting the time to failure and reliability of the sys-
tem can provide useful information for the decision making of 

an economical maintenance schedule. 

(Additionally, predictive maintenance needs to consider the 
types of resources required for organizational maintenance, 
including people, spare parts, tools and time. The main con-
tent of maintenance management is the closed-loop control 
of planning, implementation, inspection, analysis (PDCA).

However, this best time may not always be achievable, due to 
the overall application schedule. Therefore, it needs to be in-
tegrated into a Manufacturing Operation Management 
(MOM). MOM plays an important role in supporting continu-
ous improvements in manufacturing efficiency, quality control, 
cost savings, consistency, safety and agility across the ex-
tended value chain. MOM functions can create significant ad-
ditional value from people and existing industrial automation 
system investments by enabling streamlined end-to-end busi-
ness to manufacturing processes and providing valuable re-
al-time data in support of rapid and empowered decision 
making across operations. 

Modern MOM software solutions continue to develop and 
mature, with some leading full scope Manufacturing Execu-
tion System (MES) and Enterprise Resource Planning (ERP) 
suppliers extending their offerings. Typical functionalities of 
MOM include: APS, MRP, MES, WHM, APC, OEE, APQP, SPC/
SQC, Historian, etc. While MES stands at the central position, 
it normally includes manufacturing execution and part of 
quality execution and compliance. Predictive maintenance or 
equipment health management is part of MOM and getting 
more and more important.

The standard IEC 62264 defines structures, functional areas, 
activities, objects and attributes suitable for MOM. Especially 
the functional area of maintenance management is of interest 
here. Using this standard, a predictive maintenance solution 
can access relevant functional components of MOM using 
standardised interfaces and transactions.

2.7 System aspect

The specific algorithms for status calculation and prediction 
vary depending on the specific functions a component pro-
vides. The idea of the function block, as introduced in VDMA 
[VD582], allows to encapsulate and to hide details of the algo-
rithms, while enabling to set up complex predictive mainte-
nance solutions with aggregation of data along the functional 
hierarchy of a system. Furthermore, it protects the intellectual 
properties of the algorithm developer. 

To cope with the increasing flexibility and heterogeneity of fu-
ture manufacturing systems, it is necessary to provide a sys-
tematic approach for predictive maintenance. This calls for the 
development of a predictive maintenance platform (see Annex 
B as an example) or even a complete eco system. Its overall ar-
chitecture shall be modular, enabling to easily add or enhance 
functional components for sensing, condition status assess-
ment, diagnosis, and prediction. Besides these functional com-
ponents, it shall comprise means for a flexible deployment of 
such functions to different resources. For example, a sensing 
function determining data from an electric drive may be im-
plemented inside the drive itself, but also at a dedicated moni-
toring component connected to field level network, to an 
edge or fog component, or directly to a cloud. The different 
deployment options can be chosen with respect to computing 
capabilities, available context data (e.g., production schedule), 
or cost.

Thus, a predictive maintenance solution shall provide neces-
sary abstractions in components and interfaces to be adapt-
able to different industries and application domains. On the 
other hand, the configuration effort shall be kept minimal. For 
example, it should support plug & produce operations and, 
perhaps, also self-adaptation.

This requires the clear distinction between the single function, 
its aggregation along the functional hierarchy, and its deploy-
ment to a certain resource. From a system architecture’s view, 
it is envisaged to apply systematic design principles, e.g. the 
viewpoint concept according to ISO/IEC/IEEE 42010 [ISO42]. 
Separating business and functional viewpoints from imple-
mentation and communication viewpoints supports the re-
quired flexibility. The architectural aspects shall be supported 
by organizational measures, e.g. methods for identification, 
versioning, dependency tracking, etc. Since this roadmap is 
mainly focusing on predictive maintenance in the context of 
Industrie 4.0/Intelligent Manufacturing, concepts and specifi-
cations set up in this context shall be applied.

Part 3: Use case

Case 1: Condition monitoring and fault diagnosis of robot 
gearbox

User background and problems:

At present, after industrial robots have been widely used in 
automobile welding and other fields for more than five years, 
their gearbox develops problems, e.g. tooth breakage and 
wear. Although it is not possible to trigger a robot fault alarm, 
the repeated positioning accuracy is difficult to guarantee. 
Consequently, the welding failure rate increases. In the past, 
the maintenance engineer periodically judged the operation of 
the gearbox by the noise of each gearbox of the robot and de-
cided whether to change the decelerator. The assessment is 
relatively subjective, and the gearbox is expensive. Therefore, it 
is difficult for the factory to evaluate the necessity and effec-
tiveness of the replacing the equipment.

Predictive maintenance methods:

The sensors such as temperature and vibration are deployed 
on the key parts of the equipment, to detect and test the 
equipment state in real time. The data is uploaded in real time 
through the industrial wireless Internet, and through the 
switch, the vibration and temperature data are cleaned by 
means of data processing methods such as filtering, then the 
eigenvalue is uploaded to the cloud platform. Using the tech-
nology of deep learning neural network, before the system is 
put into operation, the storage and training of the robot fault 
data of permutation combinatorial grouping test such as fault 
type, life time and undertaking, making the parameters of the 
system converge to a set of parameters. Then the measured 
data corrected parameters are continuously used, which 
makes the system analysis ability continuously optimized and 
the judgment more accurate.

Application Effect:

The condition monitoring and fault early warming of robot 
gearbox based on wireless communication is provided to the 
users. Through the analysis and training of off-line storage 
data, the training and correction of measured data, diagnosing 
equipment failure and predicting life cycle, the defective rate 
of the robot welding process is reduced, the yield of product is 
enhanced, and the product quality is improved.

Figure 8: The relationships among time to failure, reliability and cost
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Case 2: Wind turbine intelligent real-time online condi-
tion monitoring system

User background and problems:

Wind turbines run with many unpredictable operating condi-
tions that can cause turbine operation failure. If it is possible 
to detect and deal with the fault as soon as possible, the avail-
ability is increased, and the maintenance cost is reduced. The 
traditional vibration sensor cannot analyse the transmission 
chain in real time. The vibration data acquired can only obtain 
the vibration amplitude overrun of the turbine, which cannot 
accurately reflect fault point and failure cause. Even if the con-
dition monitoring system is installed at a later stage, most 
products are not able to synthetically analyse and diagnose 
the overall condition information of the fan in real time.

Methods/Means of Predictive Maintenance:

The solution of condition monitoring system allows the inte-
gration from sensor to acquisition analysis software to be ex-
tended. Through multi-channel vibration data real-time acqui-
sition, the flow algorithm is used to calculate and analyse it in 
real time. According to the factory parameters of the equip-
ment, the faults and problems of wind turbine drive train sys-
tem can be detected in advance. Additionally, the turbine con-
dition data is provided to the main control system real-time 
online, so an intelligent control system can be realized. 

Application Effect:

Wind turbine manufacturers are supported in providing early 
fault warning and diagnosis for installation of the unit. By pro-
viding relevant condition data in real time, product safety and 
reliability can be improved, and can be extended into af-
ter-sale warranty. Furthermore, it can reduce the maintenance 
workload, the labour intensity and the maintenance cost. Fi-
nally, it provides a basis for optimization and manage the as-
sets of the wind farm. 

Case 3: Using a data-driven early warning method to dis-
cover the precursor characteristics of equipment failures

User background and problems:

The small steam turbine in a generator unit of a power plant 
has no alarm or warning before the failure of the sensor. In the 
past, a multilevel threshold is present on the monitoring sen-
sor to realize the early warning. However, this method has 
high requirements for equipment management personnel, and 
the present threshold is not accurate due to the aging of 
equipment, which is can easily cause false negatives. The users 
intend to find out the data characteristics that build an early 
indicator of a fault. 

Predictive maintenance methods:

By using neural network-based technology, historical data of 
the equipment before the failure is used as training input. The 
approach is based on the multi-sensor data fusion analysis 
mechanism, and the operation state characteristics of the 
equipment are extracted from the historical data. In the pro-
duction process, the abnormal state of the equipment opera-
tion is recognized in real time by the establishment of its sta-
tus feature model.

Application Effect:

It provides user enterprises with effective means to realize the 
early warning and monitoring of equipment by operation data.

Case 4: Value Based Service based on asset health infor-
mation

User background and problems:

Nowadays, typically a product provider delivers a product to a 
customer and does not have any feedback from the usage of 
his product. The application scenarios “VBS – Value-Based 
Service” and “TWP – Transparency and Adaptability of deliv-
ered Products”, as defined in [], are focusing on creating new 
services based on asset health information. Providing this 
feedback data to the product provider will enable him to de-
velop updates and new releases for the product type. This will 
enhance the product for future use and will enable the prod-
uct provider or an independent service provider to adapt the 
product instances in cooperation with the customer. 

Predictive maintenance methods:

The product used at the customer’s site is constantly moni-
tored to calculate the health status and to carry out necessary 
maintenance measures. The product-related raw data and the 
calculated health states can be delivered back to the product 
provider, together with context and application information 
from the usage of the product instance. The specific amount 
of data needs to be agreed between product provider, possible 
service providers, and the customer. Based on the provider’s 
models and detailed knowledge of the product, the feedback 
data can be evaluated to discover and to predict possible fail-
ures and product errors in advance. Since the customer may 
collect such data from a multitude of customers, different ap-
plication scenarios can be considered and evaluated, perhaps 
by using big data and data analytics approaches. The possible 
findings can be fed back into the product development pro-
cesses.

Application Effect:

Compared to the use cases above, this use case focuses on a 
longer feedback loop covering product providers and custom-

ers. The updates of the product enhance the product’s robust-
ness and thus allows its optimal usage at the customer’s site. 
In addition, it may help to create new services to better tailor 
the products to the individual customers’ needs. These ser-
vices may be offered by the product provider and by new ser-
vice providers.

Case 5: Usage of Predictive Maintenance measures to sup-
port Adaptable Factory concepts

User background and problems:

The installation of a plant is currently pre-engineered and is 
fixed for a long time. To support flexibility in production, the 
adaptation of the plant to changing production and market 
conditions needs to be enhanced. This is in the focus of the 
Industrie 4.0 application scenarios “WFF – Adaptable Factory” 
and “DDA – Seamless and Dynamic Engineering of Plants”. 
The plant needs to be able to adapt itself to new situations by 
changing its structure and its components. However, the ad-
aptation currently does not consider the actual station of the 
available components, in terms of their individual future ca-
pacity and availability or their specific history.

Predictive maintenance methods:

The focus in this use case is to maintain a historical list of 
component-specific conditions and events. This will include 
health state prognoses, results of maintenance actions from 
MES, repair records, performance evaluations, etc. Together 
with logs of production contexts and their changes, a better 
prognosis can be created to characterize the effects of poten-
tial adaptations in a plant. It can be figured out in advance, if a 
combination of individual components that – based on their 
specifications – should fulfil a functional requirement, will in-
deed fulfil it based on the individual status of the components. 
It may also enhance the calculation of a remaining time of life 
for the new combination. Data analytics may support the deci-
sion, also enhancements by using artificial intelligence sys-
tems can be expected.

Application Effect:

The better estimation of the results of the possible adaptation 
of the plant will enhance to assess the values of adaptations, 
either proposed by the components themselves or by an engi-
neering process at runtime. This will support the process of 
determining the optimal adaptation and will provide a more 
accurate performance prognosis.

Use case 6: Predictive Maintenance of Printing Systems as 
basis for Data driven Service Engineering

User background and problems:

A manufacturer of printing machines has been offering its 

customers a remote troubleshooting service. The vibration 
analysis and current monitoring sensors integrated in the 
printing machine can be used to obtain a large amount of con-
dition data and operating data. The customers trust in this 
manufacturer for years and accept the online transmission of 
this condition and operating data to the manufacturer.

With condition monitoring and analysis of the condition data, 
the manufacturer has been able to detect wear and damage to 
the machine at an early stage in the last few years and thus 
significantly increase the availability of the printing systems. 
Further analysis of the condition data in connection with the 
operating data has led the manufacturer to realize that many 
of the effects of wear result from incorrect or suboptimal op-
eration of the printing machines.

Methods/Means of Predictive Maintenance:

With a detailed combination and analysis of the condition data 
and operating data, the manufacturer was able to determine 
very precisely which modes of operation increase certain wear 
effects and thus increase the maintenance effort for the oper-
ator of the printing machine. The objective of this analysis was 
not only to determine the predictive maintenance activities, 
but to prevent maintenance by reducing the wear of the print-
ing machines and improving mode of operation and thus to 
reduce the overall maintenance effort. Thus, the operator 
could be described in detail, which malfunctioning measures 
were taken at the start of the printing machine when and at 
what increased wear these incorrect measures have led. Based 
on this information, the operator was better able to train his 
plant operators on how to optimally start, ramp up and shut 
down a pressing system.

Application Effect:

The manufacturer of the printing presses has been able to de-
velop new services for its customers by combination and anal-
ysis of condition and operational data, which originally col-
lected only for predictive maintenance. With these new ser-
vices, the manufacturer of the printing machines succeeds in 
distinguishing themselves from the offers of other competi-
tors and, at the same time, strengthening customer loyalty. 

By including the data-analytical methods in the entirety of all 
service processes, Condition monitoring has on the one hand a 
very positive effect on the service cost level of the manufac-
turers. On the other hand, machine operators can use this in-
formation to optimize their production processes. The manu-
facturer of printing machines reports on significant perfor-
mance improvements more than 15%. Condition Monitoring is 
an important data basis for further digital services in the sense 
of Industrie 4.0. However, condition monitoring can only be 
seen as the first important step on the way to digital transfor-
mation. New data driven business models (e.g. pay per use) 
across the value chain will follow.



16 17

Part 4: Predictive Maintenance Infrastructure

An infrastructure for predictive maintenance shall be modu-
larized and shall contain the necessary components to realize 
the functions as shown in Fig. 2. It shall be defined following 
the functional viewpoint as defined in ISO 42010 [ISO42]. 
Thus, a standardisation roadmap shall specify the necessary 
components, the overall structure, the internal interfaces be-
tween the functional components, and external interfaces to 
relevant systems. It shall not define a specific, technology-de-
pending implementation. 
The components include functionalities for:
- data collection and pre-processing (sensing)
- condition status assessment
- fault diagnosis
- remaining life prediction
- maintenance management
- feedback from repair measures and maintenance actions

In addition, all components of this infrastructure shall contain 
functions for common identification, self-description, and 
management of components. With respect to Industrie 4.0, 
these functions can be realized using an asset administration 
shell.

Definition of functional interfaces shall include description of 
interfaces (see Figure 9): 
-  between the functional components mentioned above 
-  between data sources and the functional components 
-  between functional components and maintenance manage-
ment, e.g. to manufacturing operations management (MOM)    
      , as defined in IEC 62264-3 activities
-  between the functional components and engineering and 
commissioning tools 

These definitions shall be provided using an abstract notation, 
e.g. ASN.1 or Interface Definition Language (IDL), and they 
shall specify functions provided by the interfaces and the sig-
natures of these functions. Based on these interface specifica-
tions, a mapping to specific implementation technologies can 
be realized.

Since the application area of predictive maintenance is wide-
spread, further refinements depending on different industries 
shall be applicable. This refinement may cover the functional 
components and the interfaces, and it may include implemen-
tation- or deployment-related details.

Part 5: Predictive maintenance standardization require-
ments

5.1 Current standards analysis

At present, predictive maintenance has obtained some re-
search results and application cases in the field of military in-
dustry and aerospace. From a standardized point of view, ISO, 
IEEE, MIMOSA, SAE, FAA and the United States military have 
made and developed the standards. In different fields, there 
are some standards,  such as CBM/IVHM/PHM/HUMS. The 
overall status is shown in the following Table 2. 

ISO/TC108 (Technical Committee for Standardization of Me-
chanical Vibration, Shock and State Monitoring) is in charge of 
basic technology research in this field. ISO standardisation 
work has been intensively concentrated in mechanical fields, 
and formed the CM&D series standard, such as: ISO 2041 “Vi-
bration, Shock and Condition Monitoring Vocabulary”, ISO 
13372 “Machine Condition Monitoring and Diagnostic Vocab-
ulary”, ISO 13379-1” Machine Condition Monitoring and Diag-
nostic--Data interpretation and diagnostic techniques--Part 1: 
General”, and ISO 13381-1 “Machine Condition Monitoring 
and Diagnostic--Prediction--Part 1: General Guide”. ISO 
13374-3:2012 and ISO 13374-4:2015 is the second edition. In 
addition, ISO 18434-1 “Condition monitoring and diagnostics 
of machines -- Thermography -- Part 1: General procedures” 
and ISO18436 “Condition monitoring and diagnostics of ma-
chines -- Requirements for qualification and assessment of 
personnel” is also related to predictive maintenance. The 
product data expression and exchange of industrial automa-
tion system integration is defined respectively in ISO 10303-
11, 21, 28, which is closely related to predictive maintenance. 
In the above analysis, a lot of work has been done on predic-
tive maintenance by ISO, which is relatively more systematic. 
At present, it is the leading in standardization in this field. 

The SCC20 Coordinating Committee for Standardization is re-
sponsible for IEEE standardization. IEEE Std 1232 and IEEE 
Std 1636(SIMICA) series standards are relatively representa-
tive. IEEE standardization focuses more on the general de-
scription of testing and diagnostic information. IEEE 1636.2 
maintenance activity information exchange standard draft 
uses XML technology to provide a possible exchange channel. 
This is also the much-needed technology to build large sys-
tems and intelligent factories.

Other international organizations have also developed rele-
vant standards for industry and strong application colour, for 
example, MIMOSA (Mechanical information management 
open standard alliance) develops OSA-CBM and OSA-EAI. 
OSA-CBM develops a standard framework for the implemen-
tation of on-condition maintenance and provides a standard 
information transfer method for CBM (based on state mainte-
nance). OSA-EAI defines an open architecture for enterprise 
application integration, including reliability, maintainability 
and asset management. SEA and FAA has also proposed some 
standards in particular areas, such as HUMS systems of heli-
copter field, IVHM/ISHM system of aerospace and commer-
cial aircraft field.

Figure 9: Interfaces of a predictive maintenance solution

Table 2: Standards and norms related to predictive maintenance

1

2

3

4

Standard Organization Technical Committee Typical Standard Category

ISO TC108 CM&D CBM

MIMOSA --------- OSA-CBM, OSA-EAI

SAE G-11r CBM

HM-1 IVHM IVHM

E-32 EHM PHM

IEEE SCC20 IEEE Std-1232

PHM IEEE Std-1636

SAE HM-1 HUMS HUMS

FAA ----------- AC-29C MG-15

U.S. Army ------------ ADS-79-HDBK

IEC TC 56 IEC 60300, IEC 60706, IEC 
60812

TC 65 IEC 62541 (OPC UA), IEC 
62264 (MES), IEC 61158, 
IEC 62904 
IEC63082-1
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With respect to condition monitoring as an important part 
within the functional chain for predictive maintenance, a 
standardization activity is ongoing in IEC TC65E. The Working 
Group 11 “Condition Monitoring” is currently defining IEC 
62904, based on the work carried out in VDMA 24582. 

IEC 62904 Part 1 will contain basic terminology and models, 
including semantic property descriptions based on IEC 61360 
definitions, compatible to eCl@ss and Industrie 4.0. Part 2 is 
planned as a TR with use cases and requirements, guidelines 
and examples. The set of documents is accomplished by IEC 
62904 Part 3 Technology Mappings. In these parts, the map-
ping of the concepts from part 1 to specific technologies will 
be defined. They will include mappings to IEC 61131-3 (PLC 
programming), to IEC 62541 (OPC UA), to IEC 62264 (MES), to 
IEC 61158 (Fieldbus), and to IEC 61131-9 (IO-Link). Other 
parts may follow.

In IEC, other technical committees are working on topics rele-
vant for predictive maintenance as well. However, they focus 
on different application domains. For example, the standards 
IEC 61800-7-1 Adjustable speed electrical power drive sys-
tems - Part 7-1: Generic interface and use of profiles for 
power drive systems - Interface definition discusses applica-
tions in drive systems, while IEC 61850-90-3 Communication 
networks and systems for power utility automation - Part 90-3 
is focusing on condition monitoring diagnosis and analysis in 
power grids and substation automation.

The related standards discussed here are listed in Annex A. 

However, it is not closed list.
On the basis of the above analysis, the current system of 
standards for the whole predictive maintenance framework is 
not yet fully established. There is certain correlation degree 
between the work of the standardisation organizations and 
the industry background, and standardisation work will be 
some overlap. Predictive maintenance technology is now rela-
tively mature and has many best practices. However, under the 
background of intelligent manufacturing and Industrie 4.0, 
new technologies, e.g. data analytics and artificial intelligence, 
are still not reflected accordingly. 

5.2 Standardisation requirement and suggestions

At present, more extensive research has been carried out in 
the field of predictive maintenance and health management in 
the world. The research requirements and objectives mainly 
focus on the production and application field of high-tech 
equipment such as aviation, aerospace, ship and weapons. The 
complexity and reliability of products in these fields is high, 
therefore the demand for predictive maintenance is clear and 
strong. There is a gap between theoretical research and practi-
cal application. To overcome this, a systematic, clear analysis 
and guidance for predictive maintenance is still needed. 
Due to the rapid development of new technologies such as ar-
tificial intelligence, big data and cloud computing, and to bet-
ter adapt to the needs of intelligent manufacturing, future 
predictive maintenance standardization should allow the easy 
integration of such technologies and thus enabling their us-
age. 

The main vision for standardization in predictive maintenance 
is to provide a standardised infrastructure. This infrastructure 
shall integrate the different functional entities described in 
chapter 2. It shall focus on providing a systematic and func-
tional view of predictive maintenance and shall provide appro-
priate interfaces to relevant functionalities like sensing, health 
state calculation, prediction, and maintenance management. 
This should include access to information of the entity, origi-
nating from different stages of its life cycle. Thus, a common 
framework shall be established, leaving room for easy embed-
ding of new technologies. This will allow for future develop-
ments and will be a basis for application domain specific spe-
cialization and implementation.

Therefore, the standardisation of the predictive maintenance 
structure should include the following aspects, as shown in 
figure 10.

1. Basic level: model and procedure 

2. Functional level: sensing, condition status assessment, 
fault diagnosis, remaining life prediction, maintenance 
management 

3. Application level: application guide, typical applicatio 

4. Provide interfaces to other related system, e.g. MOM/
ERP/PLM/PDM

The introduction of predictive maintenance based on a stand-
ardised infrastructure will change the business of equipment 
manufacturers. Since they have knowledge how to maintain 
their products, they might deliver software and provide ser-
vices to support this. Standardisation will also provide benefits 
for system integrators and end users by introduction of 
well-defined interfaces and system structure. Furthermore, it 
will provide new alternatives for professional service provider 
by delivering advanced algorithms as components into the in-
frastructure.

For implementation of this infrastructure in Industrie 4.0/In-
telligent Manufacturing systems, e.g. embedding predictive 
maintenance functionalities as partial model into the adminis-
tration shell of Industrie 4.0/Intelligent Manufacturing com-
ponents, additional documentations and specifications need 
to be considered. 

Summary

This roadmap describes current standards and approaches for 
predictive maintenance and discusses enabling technologies. 
It also shows the complexity of the task of predictive mainte-
nance. Considering this, it becomes clear, that there are many 
different topics to be addressed to introduce a generalized 
and standardized approach for predictive maintenance of In-
dustrie 4.0/Intelligent Manufacturing. 

Therefore, standardisation should focus on providing a stand-
ardised infrastructure for predictive maintenance. It should 
consist of a set of single standards setting basic terminology 
and models, defining an overall structure using modularity ap-
proaches with well-defined interfaces. It shall be supported by 
domain-specific standards and by specifications for mapping 
to already existing standards. This calls for a close cooperation 
between different standardisation organizations. Finally, a 
guidance for technology mapping or application integration 
should be included. 

Figure 10: standardization structure of PM
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Annex A. The list of current standards and guides for pre-
dictive maintenance 

A.1 International standards

ISO 13374-1:2003 Condition monitoring and diagnostics of 
machines -- Data processing, communication and presenta-
tion -- Part 1: General guidelines

ISO 13374-2:2007 Condition monitoring and diagnostics of 
machines -- Data processing, communication and presenta-
tion -- Part 2: Data processing

ISO 13374-3:2012 Condition monitoring and diagnostics of 
machines -- Data processing, communication and presenta-
tion -- Part 3: Communication

ISO 13374-4:2015 Condition monitoring and diagnostics of 
machine systems -- Data processing, communication and 
presentation -- Part 4: Presentation

ISO 13381-1:2015 Condition monitoring and diagnostics of 
machines -- Prognostics -- Part 1: General guidelines
ISO 13372:2012 Condition monitoring and diagnostics of ma-
chines -- Vocabulary

ISO 18434-1:2008 Condition monitoring and diagnostics of 
machines -- Thermography -- Part 1: General procedures

ISO 10303-11:2004 Industrial automation systems and inte-
gration -- Product data representation and exchange -- Part 
11: Description methods: The EXPRESS language reference 
manual

ISO 10303-21:2016 Industrial automation systems and inte-
gration -- Product data representation and exchange -- Part 
21: Implementation methods: Clear text encoding of the ex-
change structure
ISO 10303-28:2007 Industrial automation systems and inte-
gration -- Product data representation and exchange -- Part 
28: Implementation methods: XML representations of EX-
PRESS schemas and data, using XML schemas

ISO 2041:2009 Mechanical vibration, shock and condition 
monitoring -- Vocabulary
ISO 13379-1:2012 Condition monitoring and diagnostics of 
machines -- Data interpretation and diagnostics techniques -- 
Part 1: General guidelines

ISO 13381-1:2015 Condition monitoring and diagnostics of 
machines -- Prognostics -- Part 1: General guidelines

IEEE Std 1232-1:1997 IEEE Trial-Use standard for artificial in-
telligence exchange and service tie to all test environments 
(AI-ESTATE): Data and knowledge specification

IEEE Std 1232-2:1998 IEEE Trial-Use standard for artificial in-
telligence exchange and service tie to all test environments 
(AI-ESTATE): Service specification

IEEE Std 1232-3:2014 IEEE Guide for the use of artificial intel-
ligence exchange and service tie to all test environments 
(AI-ESTATE)

IEEE Std 1636-1:2007 IEEE Trial-Use standard for software in-
terface for maintenance information collection and analysis 
(SIMICA): Exchanging test results and session information via 
the extensible markup language (XML)

IEEE Std 1636-2:2010 IEEE Trial-Use standard for software in-
terface for maintenance information collection and analysis 
(SIMICA): Exchanging maintenance action information via the 
extensible markup language (XML)

IEEE Std P1856:2017 IEEE Draft standard framework for 
prognostics and health management of electronic systems

IEC 62890:2016 Life-cycle management for systems and prod-
ucts used in industrial-process measurement, control and au-
tomation

IEC 60300-3-14:2004 Dependability management - Part 3-14: 
Application guide - Maintenance and maintenance support

IEC 60706-2:2006 Maintainability of equipment - Part 2: 
Maintainability requirements and studies during the design 
and development phase

IEC 60812:2006 Analysis techniques for system reliability - 
Procedure for failure mode and effects analysis (FMEA)

IEC 61158: Digital data communications for measurement and 
control — Fieldbus for use in industrial control systems

IEC 62541: OPC unified architecture

IEC 62904 Industrial-process measurement, control and auto-
mation - Uniform representation of condition monitoring 
functions 

ISO/IEC 62264 Enterprise/Control System Integration
 
OSA-CBM UML Specification 3.3.1: 2010 Interface

OSA-CBM UML Specification 3.3.1: 2010 Information

OSA-EAI Basic Terminology Dictionary 3.2.3: 2012

OSA-EAI CCOM UML Diagrams: 2012

AC 21-29C:2008 Detecting and Reporting Suspected Unap-
proved Parts

US Army ADS-79C-HDBK: 2005 Aeronautical design standard 
handbook for condition-based maintenance systems for US 
army aircraft

A.2 German Standards

VDMA 24582: Fieldbus neutral reference architecture for Con-
dition Monitoring in production automation. 2013

NE 107: NAMUR-Recommendation Self-Monitoring and Di-
agnosis of Field Devices. 2017.

NE 123: NAMUR-Recommendation Service and Maintenance 
of the Physical Layer of Fieldbuses, 2008.

NE 129: NAMUR-Recommendation Plant Asset Management. 
2009.

NA 157: NAMUR Arbeitsblatt Documentation Requirement on 
Instrumentation from Maintenance Perspective. 2015. 

NE 158: NAMUR-Recommendation Health Monitoring of PCS 
Assets. 2016. 

VDI 2890: Planned maintenance – Guide for the drawing up of 
maintenance lists. 1986.

VDI /VDE 2650 Part 2: Requirements regarding self-monitor-
ing and diagnosis in field instrumentation - General faults and 
fault conditions. 2006.

VDI/VDE 2651 Part 1: Plant asset management (PAM) in the 
process industry - Definition, model, task, benefit. 2017.

VDI/VDE 3543: Diagnosis of electric drives. 2007.

VDI 2879: Maintenance - Inspection of installation and build-
ings with UAV (unmanned aerial vehicle). 2017.

VDI 2882: Obsolescence Management. 2016.

VDI/VDE 2883 Part 1: Maintenance of photovoltaic installa-
tions - Basics. 2017.

VDI 2885: Standardized data for maintenance planning and 
determination of maintenance costs - Data and data determi-
nation.  2003.

VDI 2886: Benchmarking applied to maintenance. 2003.

VDI 2887: Quality management in maintenance. 1998.

VDI 2888: Maintenance condition monitoring. 1999.
VDI 2889: Methods and systems for condition and process 
monitoring in maintenance. 1998.

VDI 2890: Planned maintenance - Instruction on creating of 
maintenance lists. 2017.

VDI 2891: Maintenance relevant criteria for purchase of ma-
chines. 2008.

VDI 2892: Management of maintenance spare parts. 2006.

VDI 2893: Selection and formation of indicators for mainte-
nance. 2006.

VDI 2894: Planning of manpower for maintenance. 1987.

VDI 2895: Organisation of maintenance - Maintenance as a 
task of management. 2012.

VDI 2896: Controlling of maintenance within plant manage-
ment. 2013.

VDI 2897: Maintenance - Application of lubricants in plants - 
Objectives and organisation. 1995.

VDI 2898: Utilisation of EDP for maintenance - Requirements 
and criteria. 1996.

A.3 Chinese Standards

GB/T 22393-2015: Condition monitoring and diagnostics of 
machines—General guidelines

GB/T 22394.1-2015: Condition monitoring and diagnostics of 
machines—Data interpretation and diagnostics techniques—
Part 1: General guidelines

GB/T 20921-2007: Condition monitoring and diagnostics of 
machines - Vocabulary

GB/T 22281.1-2008: Condition monitoring and diagnostics of 
machines - Data processing, communication and presentation 
- Part 1: General guidelines

GB/T 22281.2-2011: Condition monitoring and diagnostics of 
machines - Data processing, communication and presentation 
- Part 2: Data processing

GB/T 25742.1-2010: Condition monitoring and diagnostics of 
machines - Data processing, communication and presentation 
- Part 1: General guidelines

GB/T 25742.2-2013: Condition monitoring and diagnostics of 
machines - Data processing, communication and presentation 
- Part 2: Data processing

GB/T 23713.1-2009: Condition monitoring and diagnostics of 
machines - Prognostics - Part 1: General guidelines
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GB/T 19873.1-2005: Condition monitoring and diagnostics of 
machines-Vibration condition monitoring-Part 1: General pro-
cedures

GB/T 19873.2-2009: Condition monitoring and diagnostics of 
machines - Vibration condition monitoring - Part 2: Process-
ing, analysis and presentation of vibration data

GB/T 25889-2010: Condition monitoring and diagnostics of 
machines - Acoustic emission

GB/T 2298-2010: Mechanical vibration, shock and condition 
monitoring – Vocabulary

GB/T 27758.1-2011: Industrial automation systems and inte-
gration - Diagnostics, capability assessment and maintenance 
applications integration - Part 1: Overview and general re-
quirements

GB/T 27758.2-2015: Industrial automation systems and inte-
gration—Diagnostics, capability assessment and maintenance 
applications integration—Part 2: Descriptions and definitions 
of application domain matrix elements

GB/T 26221-2010: Condition - based maintenance system ar-
chitecture

GB/T 30831.1-2014: Condition monitoring and diagnostics of 
machines Thermography - Part 1: General procedures

Annex B. Predictive Maintenance Platform (example)

With respect to the requirements for a systematic approach 
for predictive maintenance, this annex contains an example for 
a predictive maintenance platform.

User background and problems:
With the intensification of market competition, more and 
more car manufacturers put forward new quality require-
ments, which lead manufacturers of auto parts to continue 
improving the quality control of the production process to 
meet the needs of machine manufacturers. For example, in 
manufacture of the automobile hub, leading enterprises are 
committed to building the digital workshop of wheel produc-
tion. However, the operation and maintenance of manufactur-
ing equipment (such as machining centres, robots, and injec-
tion moulding machines) will directly affect the product qual-
ity and progress. At the same time, there are many sub-centres 
of the company in the country. In order to guarantee that the 
quality of production is easy to be controlled, the equipment 
forecasting maintenance platform needs to be established to 
monitor the equipment operating state of all production 
plants and to achieve that the maintenance resources is de-
ployed efficiently.

Predictive maintenance methods:

A) Condition monitoring

Condition monitoring is the basis of predictive maintenance 
platform, usually performs state monitoring of key failure 

points by means of external sensing terminal. With the im-
provement of intelligent degree of equipment, partial equip-
ment can provide state monitoring data of the ontology. 
Therefore, the state data acquisition from the equipment also 
becomes an important data source.
The modelling method that based on function blocks is based 
on the function to analyse the equipment and find the cou-
pling relationship between input and output of each function. 
Find the functions. Coupling between input and output. A po-
tential implementation is technology mapping to OPC UA and 
fieldbus. With the application of this technology, it can clearly 
define the function of the equipment and realize the func-
tional condition monitoring of the equipment.

B) Data transmission

The predictive maintenance platform can support different 
communication media (fieldbus, wired and wireless network, 
etc.), communication interface (Modbus RTU/Modbus TCP, 
Profibus, etc.), and support external standard output interface 
(OPC UA, etc.), as well as redundant and multi-way data ac-
quisition, etc. It can achieve the interconnection between the 
equipment of different types and models whose core is this 
platform.

C) Fault diagnosis and life prediction

The platform can provide the functions of fault diagnosis and 
life prediction and cover a variety of failure physics and life 
prediction models. It can select one or more models quickly 
and accurately for equipment type and failure mechanism. 
With the support of deep learning and artificial intelligence, 
the platform can realize the self-optimization of the model, 
and constantly improve the confidence of life prediction.

D) Maintenance decision

A joint optimisation model of predictive maintenance and 
spare parts management is constructed by using fault predic-
tion results. With maintenance interval, maintenance thresh-
old and spare parts order threshold as optimal variables, with 
minimum total cost of equipment maintenance cycle as opti-
mization goals, the expert knowledge base is set up. Compar-
ing the cost of the potential loss caused by the temporary un-
repair and the immediate maintenance, it can provide the pre-
dictive maintenance decision recommendations.

Application effect:

The predictive maintenance platform is under construction 
and the data collection and integration within the device has 
been completed. The problem is how to combine device data 
with the operating state of the device, which requires a lot of 
data and research. But the platform provides the technical ba-
sis for the operation and maintenance of equipment and con-
trol of enterprises (with multiple sub-centres). By constructing 

the platform, the enterprises will achieve the optimal alloca-
tion of manufacturing and maintenance resources, which, with 
the quality control measures, will greatly enhance the quality 
of the product.

Annex C. The list of abbreviation

AI, Artificial Intelligence
APQP, Advanced Product Quality Plan
APS, Advanced Planning and Scheduling
CBM, Condition Based Maintenance
CCD, Charge Coupled Device
CM&D, Condition Monitoring and Diagnostics of Machines
CNC, Computer Numerical Control
CPS, Cyber Physical System
CSAA, China Sci-tech Automation Alliance
CVA, Canonical Variate Analysis
DD, Data Driven
ERP, Enterprise Resource Planning
FAA, Federal Aviation Administration
FDC, Fault Detection and Classification
FFT, Fast Fourier Transformation
GMA, Association of German Engineers
HHT, Hilbert-Huang Transform
HUMS, Health and Usage Monitoring Systems
ICT, Information Communications Technology
IEEE, Institute of Electrical and Electronics Engineers
IIoT, Industrial Internet of Things
IM, Intelligent Manufacturing
ISHM, Integrated System Health Management
ISO, International Organization for Standardization
IVHM, Integrated Vehicle Health Management 
MES, Manufacturing Execution Systems
MIMOSA, Mechanical Information Management Open Stand-
ard Alliance
MOM, Manufacturing Operation Management
MRP, Material Requirement Planning
NAMUR, Normen Arbeitsgemeinschaft Mess- und Regelungs-
technik
OEE, Overall Equipment Effectiveness
OPC UA, OPC Unified Architecture
OSA-CBM, Open System Architecture - Condition Based 
Maintenance 
OSA-EAI, Open System Architecture - Enterprise Application 
Integration
PCA, Principal Component Analysis
PCS, Process Control System
PDCA, Planning, Implementation, Inspection, Analysis
PHM, Prognostics and Health Management
PLC, Programmable Logic Controller
PLS, Partial Least Squares
PoF, Physics of Failure
RFID, Radio Frequency Identification
RTU, Remote Terminal Unit
SAE, Society of Automotive Engineers
SEA, Systems Engineering AssociationFigure B.1 Example of Predictive Maintenance Platform Function
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SIMICA, Software Interface for Maintenance Information Col-
lection and Analysis
SPC, Statistical Process Control
SQC, Statistical Quality Control
SPS/IPC/DRIVES, Exposition and Fair for PLCs, Industrial PCs, 
Drive Systems, and Automation and Control
TCP, Transmission Control Protocol
VDI, Verein Deutscher Ingenieure
VDMA, Verband Deutscher Maschinen- und Anlagenbauer
WHM, Web Host Manager
XML, Extensible Markup Language
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